#### FIGURE 1 – ORIGINE ET DIVERSITE DES CELLULES DU VIVANT

#### Phylogenie moleculaire du vivant base sur l'analyse de l'ARN ribosomique 16S/18S

Le vivant est organisé en 3 groupes monophylétiques : les **Eubactéries**, ou **Bactéries** / les **Archées** / les **Eucaryotes**. Les procaryotes regroupent les Eubactéries et les Archées. (*Lecointre*)

Il est admis que l'ensemble des êtres vivants actuels dérive d'un ancêtre commun nommé LUCA (Last Universal Common Ancestor).



Mitochondries et chloroplastes sont positionnés dans le groupe des Eubactéries : la **mitochondrie** est rapprochée d'une **Protéobactérie** (*Agrobacterium*) et le **chloroplaste** d'une **Cyanobactérie** (*Anacytsis*). C'est un argument en faveur de **l'origine endosymbiotique** de ces structures cellulaires : la mitochondrie est probablement issue d'une Protéobactérie hétérotrophe et le chloroplaste d'une Cyanobactérie par des endosymbioses.





L'endosymbiose de bactéries aérobie a probablement eu lieu chez une cellule eucaryote « primitve » qui possédait déjà un noyau et du réticulume endosplasmqiue (provenant de replis de la membrane plasmique). La membrane interne de la mitochondrie est donc un vestige de la membrane bactérienne ; la membrane externe de la mitochondrie est un vestige de la membrane de la vésicule d'endocytose.



#### **ENDOSYMBIOSE A L'ORIGINE DES CHLOROPLASTES**

Endosymbiose des chloroplastes d'après Boitard, modifié et simplifié

#### Schéma : l'origine des cellules eucaryotes par endosymbiose

membrares 4 eucarghe primitive intrat chromosomes Unearres. eubactérie (d-protéabactérie) noyau cytosquelet 2-3 Ga ¢ accayste à métabolique repiratoine Transfert hongontal de gères mitochardnie . )) cyarobactérie 1,7-2 Ga Transfert horizontal de géres & eucarph photogynthetique choroplaste chiménisation du Évelution Moluchice génome nucléaire (Enorsion génétique) des génomes des organitos soni-autonomes

#### FIGURE 2 – PRINCIPAUX ORGANITES ET COMPARTIMENTS DES CELLULES EUCARYOTES

(d'après un document de Tanguy Jean)

Ordres de grandeur à connaître :

Noyau : 5-10 μm Mitochondrie : 1 μm Chloroplaste : 5 μm

#### Il faut également savoir schématiser les principaux organites !

| Structure cellulaire |                                                  | Organisation                                                                                                                                                                    | Fonction                                                                                                                                                                      | Électronographie (MET)                                                                    |
|----------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| NOYAU                | Enveloppe<br>nucléaire                           | - Double membrane percée<br>de pores (pas toujours<br>visibles au MET)                                                                                                          | <ul> <li>Limitation du noyau<br/>(enfermement de l'IG)</li> <li>Échanges avec le cytosol :<br/>ARN, ribosomes, protéines</li> </ul>                                           | enveloppe nucléaire                                                                       |
|                      | Chromatine                                       | <ul> <li>ADN plus ou moins<br/>condensé dans le<br/>nucléoplasme &gt;<br/>euchromatine (très<br/>décondensée) +<br/>hétérochromatine<br/>(relativement condensée)</li> </ul>    | <ul> <li>Stockage de l'IG</li> <li>Duplication de l'IG (par<br/>réplication de l'ADN)</li> <li>Expression génétique :<br/>transcription (= production<br/>des ARN)</li> </ul> | euchromatine<br>hétérochromatine                                                          |
|                      | Nucléole(s)                                      | <ul> <li>Zone très riche en<br/>protéines (très sombre au<br/>MET) et plutôt ovoïde</li> </ul>                                                                                  | - Synthèse des ARNr et<br>assemblage des sous-unités<br>ribosomiques                                                                                                          | PEYCRU et al. (2013)                                                                      |
| CYTOPLASME           | Cytosol                                          | <ul> <li>Liquide fondamental de la cellule riches en solutés variés</li> <li>Contient des ribosomes</li> </ul>                                                                  | - Fonctions variées<br>- Ribosomes : traduction<br>(= production de protéines)                                                                                                | Polyribosome<br>Micrographie illustrant<br>des ribosomes (MET)<br>CAMPBELL & REECE (2004) |
|                      | Réticulum<br>endoplasmique<br>granuleux<br>(REG) | <ul> <li>Saccules de section<br/>constante (saccule en<br/>coupe : 2 membranes<br/>rapprochées) et espacés<br/>régulièrement, portant de<br/>nombreux ribosomes liés</li> </ul> | <ul> <li>[Fabrication et] maturation<br/>des protéines<br/>membranaires et des<br/>protéines destinées à la<br/>sécrétion</li> </ul>                                          | RE lisse RE rugueux (45 000 ×)                                                            |
|                      | Réticulum<br>endoplasmique<br>lisse (REL)        | - Réseau de tubules (tubule<br>en coupe : forme ovoïde ou<br>tubulaire) et dépourvues de<br>ribosomes liés                                                                      | <ul> <li>Synthèse de lipides variés :<br/>phospholipides, cholestérol,<br/>stéroïdes</li> <li>Stockage de calcium<br/>(calciosome)</li> </ul>                                 | CAMPBELL & REECE (2004)                                                                   |
|                      | Appareil de<br>Golgi<br>(dictyosomes)            | - Saccules fins et très<br>rapprochés + vésicules<br>(vésicule : petit compartiment<br>cellulaire sphérique)                                                                    | - Isolement, tri et<br>modification des protéines<br>membranaires et destinées à<br>la sécrétion                                                                              | Vésicule<br>de sicotéon quittant<br>l'appareil de Golg:<br>CAMPRELL & REFECE (2004)       |

| Lysosomes<br>[c. animales]                                                                                        | <ul> <li>Compartiments ovoïdes<br/>difficiles à caractériser sur le<br/>plan ultrastructural</li> <li>pH acide, riches en<br/>enzymes hydrolytiques</li> </ul>                                                                                                   | <ul> <li>Digestion des déchets<br/>cellulaires, des organites<br/>endommagés et du contenu<br/>des endosomes</li> </ul>                                                                                                                                                          |                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Vacuole<br>[c. végétales]                                                                                         | - Compartiment très grand<br>et souvent unique (sauf<br>cellules méristématiques :<br>multiples petites vésicules)                                                                                                                                               | <ul> <li>Gestion des déchets<br/>cellulaires         <ul> <li>Turgescence</li> <li>Homéostasie cellulaire et<br/>tampon ionique</li> <li>Stockage de pigments<br/>hydrophiles</li> <li>Stockage de métabolites<br/>variés : saccharose, acide<br/>malique</li> </ul> </li> </ul> | PI<br>V pl<br>Robert & Roland (1998a)                                                             |
| Péroxysomes                                                                                                       | - Allure de vésicules                                                                                                                                                                                                                                            | Gestion des ROS (reactive<br>oxygen species)     Voies métaboliques<br>variées, exemple :<br>photorespiration chez les<br>plantes                                                                                                                                                |                                                                                                   |
| Mitochondries<br>[organite semi-<br>autonome : origine<br>endosymbiotique]                                        | <ul> <li>Double membrane<br/>(enveloppe)</li> <li>Membrane interne avec des<br/>crêtes riches en sphères<br/>pédonculées</li> <li>Présence d'ADN (rarement<br/>visible au MET) et de<br/>ribosomes dans la matrice</li> </ul>                                    | - Respiration cellulaire :<br>production d'ATP par<br>oxydation de matière<br>organique                                                                                                                                                                                          | Membrane<br>Membrane<br>interne<br>Crètes<br>Matrice<br>mitochondriale<br>CampeelL & Reece (2004) |
| Chloroplastes<br>[C. végétales<br>chlorophylliennes]<br>[organite semi-<br>autonome : origine<br>endosymbiotique] | Double membrane<br>(enveloppe)     Présence de saccules<br>nommés thylakoïdes,<br>localement empilés en grana     Présence d'ADN (rarement<br>visible au MET) et de<br>ribosomes dans le stroma<br>Inclusions, notamment<br>amidon et gouttelettes<br>lipidiques | - Photosynthèse :<br>production de matière<br>organique à partir de<br>matière minérale et de<br>lumière                                                                                                                                                                         | Stroma<br>Membranes<br>interne et externe<br>Granum                                               |
| Exis                                                                                                              | tence d'autres plastes dans d'a                                                                                                                                                                                                                                  | autres cellules végétales : prop                                                                                                                                                                                                                                                 | lastes, amyloplastes, chromoplastes                                                               |

#### Diversité des plastes chez les cellules végétales :

- Chloroplastes : plastes riches en pigments photosynthétiques (chlorophylles et caroténoïdes) dans la membrane des thylacoïdes. Fonction de **photosynthèse**.
- Amyloplastes : plastes accumulant de l'amidon ; organites fréquemment rencontrés dans des organes de réserve (tubercules), dans les cotylédons des graines, .... Fonction de réserve.
- **Chromoplastes** : plastes accumulant des pigments rouge-orangés (famille des caroténoïdes). Fonction d'attraction des animaux pour la dispersion des fruits (zoochorie) ou du pollen.
- Oléoplastes : plastes accumulant des lipides de type triglycérides
- ...

Tous les plastes dérivent de **proplastes**, plastes indifférenciés.

#### FIGURE 3 – LES PAROIS BACTERIENNES



La coloration de Gram. L'assise de peptidoglycane entourant les bactéries gram positif fixe le colorant crystal violet et les bactéries deviennent pourpres dans un frottis après l'application de la coloration de Gram (du nom de Hans Christian Gram, qui a mis au point cette technique). Possédant beaucoup moins de peptidoglycane (localisé entre la membrane plasmique et une membrane externe), les bactéries gram-négatives ne fixent pas le crystal violet et laissent apparaître le colorant rouge de fond (généralement la safranine).

#### FIGURE 4 – DIVERSITE DES EUBACTERIES

(Peycru et al 2010)

Bactérie Gram (+)



Cyanobactérie (Gram -)



absence de compartimentation





véritable compartimentation

Espaces et compartiments chez les bactéries.

ébauche de compartimentation ?

#### FIGURE 5 – CLICHE DE MET DE DIVERSES BACTERIES

Escherichia coli

**Cvanobactérie** 





#### **Des cellules traversees par des flux**

#### FIGURE 7 - SUIVI DU TRAJET INTRACELLULAIRE DES PROTEINES SECRETEES PAR PULSE-CHASE

Expérience de Palade et al. (années 1960) réalisée sur les cellules exocrines pancréatiques, qui sécrètent les enzymes digestives dans l'intestin via le canal cholédoque.

L'expérience consiste à incuber des coupes de pancréas dans un milieu contenant de la leucine (acide aminé) radioactive (leucine tritiée) pendant un temps très court (3 min) = PULSE. La leucine radioactive est intégrée dans les protéines en cours de traduction.

Puis les coupes sont transférées dans un milieu contenant de la leucine non radioactive pendant un temps variable = CHASE ou CHASSE. Les coupes sont ensuite autoradiographiées.

#### Principe de l'autoradiographie :

Le rayonnement radioactif réduit les ions Ag<sup>2+</sup> en grains d'argent cellule pancréatique prélevée au bout de métallique, observables au microscope sous forme de grains noirs.

- 1 émulsion photographique (gélatine + cristaux de bromure d'argent) échantillon contenant des éléments radioactifs support
- 2 Le rayonnement émis par l'élément "marqué" réduit l'argent Ag<sup>2+</sup> B- Ag (métal)



La pellicule est révélée et rend les grains d'argent observables grain d'argent







#### Schématisation des autoradiographies après différents temps de chasse





chasse :120 min

Pour préciser la localisation cellulaire des protéines néosynthétisées (l'autoradiographie manquant de précision), les chercheurs ont réalisé un fractionnement cellulaire par centrifugation différentielle en parallèle de l'expérience précédente.

La radioactivité est mesurée dans les différentes fractions isolées de cellules pancréatiques (graphique ci-contre).

#### FIGURE 8 - UTILISATION DE LA GFP POUR LA LOCALISATION DE PROTEINES : EX. DE LA VOIE SECRETOIRE.

Une construction génétique contenant le gène d'une protéine (ici protéine membranaire) fusionné avec le gène de la GFP (Green Fluorescent Protein) est introduit dans des cellules en culture = technique de **transgénèse**.



La fluorescence émise par la protéine fusion (= protéine mb-GFP) est suivie au cours du temps par **microscopie** à **fluorescence** : on observe ainsi le transport de cette protéine au long de la voie sécrétoire.



NB : un dispositif particulier permet de suivre quelques protéines uniquement, afin d'identifier les étapes.

## FIGURE 9 – TRAFIC VESICULAIRE ENTRE LES DIFFERENTS COMPARTIMENTS DE LA VOIE SECRETOIRE DES <u>PROTEINES</u> (Campbell)



Des vésicules (dites de transition) se forment par bourgeonnement à la surface du REG et transitent jusqu'à la face cis d'un dictyosome de l'appareil de Golgi : les protéines passent ainsi du REG à l'appareil de Golgi où elles subissent des maturations (glycosylations, phosphorylations, clivages, ...).

Les protéines passent ensuite d'un saccule golgien à un autre par des vésicules.

Enfin, sur la face trans du dictyosome, des vésicules de sécrétion bourgeonnent et transitent jusqu'à la membrane plasmique où elles sont exocytées : les protéines sont alors sécrétées.

Les protéines membranaires sont représentées par des petits arbuscules, les protéines libres sont représentées par des boules.

### <u>FIGURE</u> 10 – TRANSFERTS DE MATIERE AU NIVEAU DE LA MEMBRANE PLASMIQUE DE LA BACTERIE *E.COLI* (Segarra et al. 2015)



Les modalités de traversée de la membrane plasmique sont très diverses et illustrées sur la figure. Seuls quelques exemples ont été donnés par catégorie de biomolécules. Abréviations des glucides: Gal: galactose; Glc: glucose; Glc-6P: glucose 6 phosphate; Lac: lactose Abréviations des acides aminés:

Glu: glutamate; His: histidine Abréviation d'autres constituants:

T/TH2: transporteur d'électrons oxydé/réduit; A/AH2: accepteur d'électrons oxydé/réduit ATP: adénosine tri-phosphate; PEP: phospho-énol-pyruvate; Pyr: pyruvate

#### NB La traversée de la membrane externe sollicite surtout les porines, peu sélectives.

## <u>FIGURE</u> 11 – LA TRANSFORMATION BACTERIENNE : FLUX D'INFORMATION GENETIQUE EXTRACELLULAIRE *(Griffiths)*

bactérie Une cours de en transformation (a) absorbe de l'ADN libéré par une bactérie morte. Au fur et à mesure de l'entrée de l'ADN au niveau de complexes de fixation à la surface de la bactérie, des enzymes dégradent l'un des brins en nucléotides ; un dérivé de l'autre brin peut être intégré dans le chromosome bactérien.





**FIGURE 12 – MECANISME DE TRANSDUCTION CELLULAIRE AU NIVEAU DE LA MEMBRANE PLASMIQUE** 

Un facteur de croissance (ex : FGF, TGF $\beta$ ) interagit avec son récepteur, une protéine membranaire. Cela provoque la phosphorylation par l'ATP et activation d'une enzyme, la phospholipase C (PLC- $\gamma$ ), qui hydrolyse alors un phospholipide membranaire, le PIP2 en seconds messagers (IP3 et DAG). Ces seconds messagers diffusent dans la cellule et dans la membrane et déclenchent une réponse cellulaire adaptée.

#### **ORGANISATION FONCTIONNELLE DU CYTOSQUELETTE EUCARYOTE**

#### **<u>Figure</u> 13 - Mesure relative de la deformation des 3 elements du cytosquelette en fonction de la force de traction exercee.**

Le carré indique le point de rupture. La pointe de flèche l'absence de rupture à ce stade.



М

#### FIGURE 14 - STRUCTURE MOLECULAIRE D'UN MICROTUBULE



Le microtubule est constitué d'unités globulaires de tubuline de 5nm environ de diamètre, associées en dimère  $\alpha$ - $\beta$ .

Les microtubules sont des **tubes cylindriques, creux et rigides.** Ils sont constitués de dimères de **tubuline**  $\alpha$  et  $\beta$  associés par liaisons faibles; la tubuline étant une protéine globulaire. Une rangée longitudinale de tubulines constitue un protofilament. 13 protofilaments forment un microtubule.

Ci-contre : microtubule stabilisé par une protéine (MAP2)

(Alberts et al ; ressources unisciel)



FIGURE 15 - STRUCTURE MOLECULAIRE DES MICROFILAMENTS D'ACTINE.



Les microfilaments d'actine (= actine F) sont des assemblages hélicoïdaux de protéine globulaire d'actine (actine G). Ils forment des structures flexibles, de 8nm de diamètre. (*Alberts et al*)

**FIGURE 16 - STRUCTURE MOLECULAIRE D'UN FILAMENT INTERMEDIAIRE (KERATINE, LAMINES, ....)** 



Les constituants de base sont des **protéines fibreuses**, associés en dimère par coiled-coil (2 hélices alpha superenroulées). Des tétramères associés ensemble forment un protofilament, et 8 protofilaments s'associent pour former les filaments.



#### FIGURE 17 – MOTEURS MOLECULAIRES INTERAGISSANT AVEC LES MICROTUBULES



#### Organisation fonctionnelle de la kinésine

**Structure IV** : 2 chaînes lourdes et 2 chaînes légères. La tête forme le domaine moteur en interaction avec les microtubules, et la queue interagit avec l'organite à transporter (vésicule par exemple).



Marche de la kinésine : le domaine moteur de la kinésine (tête) se lie aux microtubules en absence d'ATP. La liaison à l'ATP engendre le mouvement de semi-rotation. (Le mouvement de semi-rotation est plutôt aléatoire mais étant donné le nombre limité de points de fixation (uniquement fixation kinésine/ $\beta$ -tubuline) et la taille des têtes, la résultante est un déplacement dirigé).



Modèle moléculaire d'armature de microvillosité

#### FIGURE 18 – LES MICROFILAMENTS D'ACTINE FORMENT L'ARMATURE DES MICROVILLOSITES

Les microvillosités des entérocytes possèdent une **armature** constituée de **microfilaments d'actine** associés en faisceaux **parallèles** et reliés les uns aux autres par une **protéine de pontage**, la fimbrine, et reliés à la membrane par des **myosines**. Ces filaments sont stabilisés par des **protéines de coiffage** qui se trouvent à leurs extrémités. Les filaments sont ancrés sur un réseau de **filaments périphériques sous-membranaires** (actine corticale).

# Observation en MET d'une microvillosité Membrane plasmique Filaments latéraux (BBMI+calmoduline) Longueur d'une microvillosité : 1 à 2 µm



#### FIGURE 19 – CYTOSQUELETTE ET MITOSE

#### Le fuseau de division est composé de divers types de microtubules et de moteurs moléculaires (non représentés)

## Ancrage des chromosomes sur les mirotubules kinétochoriens



#### FIGURE 20 – LA CYCLOSE DES CHLOROPLASTES



#### Disposition des chloroplastes dans la cellule selon l'éclairement

• en éclairement faible (quelques centaines ou milliers de lux, soit quelques W m<sup>-2</sup> ou quelques dizaines de W m<sup>-2</sup>), les chloroplastes des Végétaux supérieurs, dont la position dans la cellule est quelconque à l'obscurité, viennent se disposer dans un plan perpendiculaire aux rayons lumineux (fig. 3-1), de face et les uns à côté des autres

• en *éclairement fort* (quelques dizaines de milliers de lux), ces chloroplastes s'alignent le long des parois, se masquant partiellement les uns les autres.



lumière diffuse, vue de profil et de face; b et d, disposition (dite parastrophe) sous un fort éclairement (d'après GUILLERMOND et MANGENOT, 1941).

Heller